Nitrous oxide reductase genes (nosZ) of denitrifying microbial populations in soil and the earthworm gut are phylogenetically similar.

نویسندگان

  • Marcus A Horn
  • Harold L Drake
  • Andreas Schramm
چکیده

Earthworms emit nitrous oxide (N2O) and dinitrogen (N2). It has been hypothesized that the in situ conditions of the earthworm gut activates ingested soil denitrifiers during gut passage and leads to these in vivo emissions (M. A. Horn, A. Schramm, and H. L. Drake, Appl. Environ. Microbiol. 69:1662-1669, 2003). This hypothesis implies that the denitrifiers in the earthworm gut are not endemic to the gut but rather are regular members of the soil denitrifier population. To test this hypothesis, the denitrifier populations of gut and soil from three different sites were comparatively assessed by sequence analysis of nosZ, the gene for the terminal enzyme in denitrification, N2O reductase. A total of 182 and 180 nosZ sequences were retrieved from gut and soil, respectively; coverage of gene libraries was 79 to 100%. Many of the nosZ sequences were heretofore unknown, clustered with known soil-derived sequences, or were related to N2O reductases of the genera Bradyrhizobium, Brucella, Dechloromonas, Flavobacterium, Pseudomonas, Ralstonia, and Sinorhizobium. Although the numbers of estimators for genotype richness of sequence data from the gut were higher than those of soil, only one gut-derived nosZ sequence did not group phylogenetically with any of the soil-derived nosZ sequences. Thus, the phylogenies of nosZ from gut and soil were not dissimilar, indicating that gut denitrifiers are soil derived.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of copper on expression of nirS, norB and nosZ and the transcription and activity of NIR, NOR and N2 OR in the denitrifying soil bacteria Pseudomonas stutzeri

Reduction of the potent greenhouse gas nitrous oxide (N(2)O) occurs in soil environments by the action of denitrifying bacteria possessing nitrous oxide reductase (N(2)OR), a dimeric copper (Cu)-dependent enzyme producing environmentally benign dinitrogen (N(2)). We examined the effects of increasing Cu concentrations on the transcription and activity of nitrite reductase (NIR), nitric oxide re...

متن کامل

Association of earthworm-denitrifier interactions with increased emission of nitrous oxide from soil mesocosms amended with crop residue.

Earthworm activity is known to increase emissions of nitrous oxide (N(2)O) from arable soils. Earthworm gut, casts, and burrows have exhibited higher denitrification activities than the bulk soil, implicating priming of denitrifying organisms as a possible mechanism for this effect. Furthermore, the earthworm feeding strategy may drive N(2)O emissions, as it determines access to fresh organic m...

متن کامل

Influence of maize mucilage on the diversity and activity of the denitrifying community.

In order to understand the effect of the maize rhizosphere on denitrification, the diversity and the activity of the denitrifying community were studied in soil amended with maize mucilage. Diversity of the denitrifying community was investigated by polymerase chain reaction (PCR) amplification of total community DNA extracted from soils using gene fragments, encoding the nitrate reductase (nar...

متن کامل

Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized wi...

متن کامل

Functional gene pyrosequencing reveals core proteobacterial denitrifiers in boreal lakes

Denitrification is an important microbial process in aquatic ecosystems that can reduce the effects of eutrophication. Here, quantification and pyrosequencing of nirS, nirK, and nosZ genes encoding for nitrite and nitrous oxide reductases was performed in sediment samples from four boreal lakes to determine the structure and seasonal stability of denitrifying microbial populations. Sediment qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 72 2  شماره 

صفحات  -

تاریخ انتشار 2006